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NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL

EQUATION WITH A DAMPING TERM

Hee Chul Pak* and Young Ja Park**

Abstract. The existence of solutions for nonlinear elliptic par-
tial differential equations with general flux and damping terms is
investigated.

1. Introduction

In this paper we study the existence theory of nonlinear elliptic equa-
tions with a damping term described by

−∇ · J = f −D(u).(1.1)

The flux field J explains the movement of some physical contents such
as temperature, chemical potential, electrostatic potential or fluid flows,
and so forth [2]. These equations (1.1) with or without a damping term
D(u) commonly and naturally have been observed in a lot of physical
phenomena, so the problem (1.1) has been one of the most fundamental
topics in the theory of partial differential equations. Our research has
focused on a mathematical development of an existence theory of the
equation (1.1) with very realistic flux field J [3, 4].

For an irrotational flux field (curl J = 0), J can be represented as
J = ∇ϕ(u) with an appropriate potential function ϕ(u). Furthermore,
if we suppose ϕ is linear, then one can simply represent J as J = A∇u
with a square matrix A on an-isotropic medium or simply J = c∇u
on isotropic medium [3, 4]. The equation in the latter case is what we
call the Poisson’s equation or Laplace’s equation with f = 0. Many
brilliant mathematicians have studied these linear types during the past
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two centuries, and as a consequence one has gotten very good and enough
understandings of these linear equations [2].

However, if ϕ is nonlinear, the situations become much more com-
plicated, and many physical observations tell us these cases are even
rather close to realistic. In this nonlinear case, one of the most common
assumptions to impose is the p-Laplacian

∆p u := ∇ · |∇u|p−2∇u

with flux J = |∇u|p−2∇u. One of the critical reasons for such assump-
tions is that the familiar function spaces used to deal with this problem
are just the classical Lebesgue space Lp(X). However it is too good to
be true in reality [6]! It is definitely required good function spaces that
can handle the problems with more natural flux term [3, 4].

The motivation of this research stems from taking a close look at

the Lp-norm: ∥f∥Lp =
(∫

X |f(x)|p dµ
)1/p

of the Lebesgue spaces Lp(X),
1 ≤ p < ∞. It can be rewritten as

∥f∥Lp := α−1

(∫
X
α(|f(x)|) dµ

)
(1.2)

with

α(x) := xp

[3, 6]. Even though the positive-real-variable function α(x) := xp has
very beautiful and convenient algebraic and geometric properties, it
also has some practical limitations to handle general nonlinear problems
[4, 5]. The new space Pα(X) is devised to overcome these limitations
without hurting the beauty of Lp-norm too much [3, 6].

We point out that a nonlinear boundary value problem of the type:

−∆u = f(|u|) sgnu(1.3)

has been studied in the space Pα(Ω) in [6]. In this paper, we present the
existence of solutions for the elliptic partial differential equation with a
damping term:

−∇ · J = f −D(u).(1.4)

The general flux J in (1.4) is given by

J := (F1(|ux1 |), F2(|ux2 |), · · · , Fn(|uxn |)) ,
and we specify the damping term D and the flux components Fj (j =
1, 2, · · · , n) in Section 3. This problem has more general flux terms than
the problem discussed in [3]. Our main observation on this report is that
the damping term does not hurt the monotonicity of the diffusion term
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very much. We employ Galerkin’s approximation method and Brouwer’s
fixed point theorem for the proof.

2. Lebesgue-Pak space Pα(X)

We introduce some terminologies to define the Lebesgue-Pak spaces
Pα(X) which are defined in [3, 4]. In this section, (X,M, µ) represents
a given measure space and R+ denotes the set of all nonnegative real
numbers.

A pre-Hölder’s function α : R+ → R+ is an absolutely continuous
bijective function satisfying α(0) = 0 [3]. If there exist pre-Hölder’s
functions β and λ that satisfy

α−1(x)β−1(x) = λ(x),(2.1)

then β is called the conjugate (pre-Hölder’s) function of α linked by λ [3].
In the relation (2.1), the notations α−1, β−1 denote the inverse functions
of α, β, respectively [3]. For 1

p + 1
q = 1 (p, q > 1), the Lebesgue base

functions (α(x), β(x)) = (xp, xq) is a pre-Hölder’s pair linked by the
identity function λ(x) = x. The transcendental pair

(α(x), β(x)) = (2ex − 2x− 2, 2(1 + x) log(1 + x)− 2x) (x ≥ 0)

is also a pre-Hölder’s pair [3]. In fact, for any Orlicz N -function A

together with complementary N -function Ã, (A, Ã) is a pre-Hölder’s

pair with λ := A−1(x)Ã−1(x) [3, 6].
The followings show some basic identities for a pre-Hölder’s pair

(α, β) with respect to λ : for α̃ := λ ◦ α, and β̃ := λ ◦ β,

x = β

(
λ(x)

α−1(x)

)
or α(x) = β

(
α̃(x)

x

)
,(2.2)

x =
α̃(x)

β−1(α(x))
or

α̃(x)

x
= (β−1 ◦ α)(x) = (β̃−1 ◦ α̃)(x),(2.3)

α̃−1(x) =
x

β̃−1(x)
,(2.4)

β−1(x)

α′(α−1(x))
+

α−1(x)

β′(β−1(x))
= λ′(x),(2.5)

y

α′(x)
+

x

β′(y)
= λ′(α(x)) for y :=

α̃(x)

x
,(2.6)
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α̃′(x) =
α̃(x)

x
+

α̃(x)

β̃
(
α̃(x)
x

)
− x

.(2.7)

The notations
α̃ := λ ◦ α and β̃ := λ ◦ β

will be used throughout this paper. Also, in the following discussion, a
function Φ represents the function of two variables on R+ ×R+ defined
by:

Φ(x, y) := α̃−1(x)β̃−1(y),

provided that a pre-Hölder’s pair (α, β) exists [3].

Definition 2.1. A pre-Hölder’s function α : R+ → R+ together with
the conjugate function β for a link-function λ is said to be a Hölder’s
function if for any positive constants a, b and ~ >0, there exist constants
θ1, θ2 (depending on a, b) such that

θ1 + θ2 ≤ ~
and that a comparable condition

Φ(x, y) ≤ θ1
ab

α̃(a)
x+ θ2

ab

β̃(b)
y(2.8)

holds for all (x, y) ∈ R+ × R+.

We now define a function space Pα(X) as follows:

Pα(X) := {f | f is a measurable function on X satisfying ∥f∥Pα < ∞},
where we set

∥f∥Pα := α̃−1

(∫
X
α̃(|f(x)|)dµ

)
.(2.9)

In [3], it shows that the metric space Pα(X) is complete with respect to
the metric :

d(f, g) := ∥f − g∥Pα for f, g ∈ Pα(X)

and says the inhomogeneity of ∥ · ∥Pα : for all k ≥ 0 and f ∈ Pα(X),

k

~
∥f∥Pα ≤ ∥kf∥Pα ≤ k~∥f∥Pα .

Unfortunately the new space Pα(X) lacks the homogeneity property:
∥kf∥ = |k| ∥f∥. However, for nonlinear problems such as the equation
(1.1), the homogeneity property may not be an essential factor - we try
to explain that the new space Pα(X) accommodates the solutions of
nonlinear problems without homogeneity as we pointed out in [3].
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We say that a pre-Hölder function β is to satisfy a slope condition if
there exists a positive constant c > 1 for which

β̃′(x) ≥ c
β̃(x)

x
.(2.10)

The slope condition (2.10), in fact, corresponds to the ∆2-condition for
Orlicz spaces [6]. We present a Poincaré-type inequality on P 1

α(Ω) for
the proof of our main theorem. The proof can be found in [5].

Theorem 2.1 (Poincaré’s inequality). Let (α, β) be a Hölder pair
with the slope condition (2.10) and Ω be an open set in Rn which is
bounded in some direction, that is, there is a vector v ∈ Rn such that

sup {|x · v| : x ∈ Ω} < ∞.

Then there is a positive constant C > 0 such that for any f ∈ P 1
α,0(Ω),

∥f∥Pα ≤ C∥Dvf∥Pα ,

where Dvf represents the directional derivative of f in the direction v;
Dvf = v · ∇f .

We refer [3, 6] for a detailed discussion of the space Pα(X).

3. Nonlinear elliptic equation with a damping term

In this section, Ω represents a fixed bounded open set in Rn with
smooth boundary. We are concerned with an elliptic partial differential
equation with a damping term:

−∇ · J(u) = f −D(u),(3.1)

where the flux vector field is given by

J(u) := (F1(|ux1 |), F2(|ux2 |), · · · , Fn(|uxn |))
with

Fj(|∂xju|) := β̃j
−1 ◦ α̃j(|∂xju|) sgn(∂xju) =

α̃j(|∂xju|)
∂xju

(j = 1, 2, · · · , n) and also the damping term:

D(u) := β̃0
−1 ◦ α̃0(|u|) sgn(u) =

α̃0(|u|)
u

.

This problem contains more general flux term than ones originally intro-
duced in [3]. We are looking for solutions of the elliptic equation (3.1)
with the flux term and the damping term in an appropriate function



232 Hee Chul Pak and Young Ja Park

space. In fact, a natural function space that can permit solutions of the
equation (3.1) turns out to be the space

V :=
{
u | ∂xju ∈ Pαj (Ω), j = 1, 2 · · · , n and u = 0 on ∂Ω

}
∩ Pα0(Ω),

equipped with the norm

∥u∥V := ∥u∥Pα0
+

n∑
j=1

∥uxj∥Pαj
.(3.2)

We now state our main theorem for the problem (3.1).

Theorem 3.1 (Main theorem). Let (αi, βi) (i = 0, 1, 2, · · · , n) be
Hölder’s pairs satisfying the slope condition (2.10). Then for any func-
tional f ∈ V ′ there exists a solution u ∈ V satisfying the equation (3.1).

4. Argument of the main theorem

The main idea of the proof is borrowed from [3]. We divide the proof
into several steps.

1. We note that V is a separable reflexive complete metric space.
Hence we can choose an independent (complete) set {w1, w2, · · · } whose
linear spans are dense in V . For each m ≥ 1, let Vm be the subspace of
V spanned by the set {w1, w2, · · · , wm}, and the (natural) isomorphism
jm : Vm → Rm is defined by

m∑
i=1

aiwi 7→ (a1, a2, · · · , am).

We note that j−1
m : Rm → Vm is continuous, since it is a linear combina-

tion of continuous functions. Then

πm := im ◦ j−1
m : Rm → V

is continuous wherein im : Vm → V means the inclusion map.
2. (Functional formulation) We set up the functional formulation

associated with the equation (3.1). For any ϕ ∈ C∞
c (Ω), we have

−
∫
Ω
∇ · J(u) ϕdµ =

∫
Ω
fϕ dµ−

∫
Ω
D(u)ϕdµ.

Then by virtue of Green theorem, the left-hand side is

−
∫
Ω
∇ · (J(u))ϕdµ =

∫
Ω
J(u) · ∇ϕdµ =

∫
Ω

n∑
j=1

α̃j(|∂xju|)
∂xju

∂xjϕ dµ.
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We also have ∫
Ω
D(u)ϕdµ =

∫
Ω

α̃0(|u|)
u

ϕ dµ.

Now we define the operators A and B by

Au(v) :=

n∑
j=1

∫
Ω

α̃j(|uxj |)
uxj

vxj dµ =

n∑
j=1

∫
Ω
β̃−1
j ◦ α̃j(|uxj |) vxjdµ,(4.1)

Bu(v) :=
∫
Ω

α̃0(|u|)
u

v dµ =

∫
Ω
β̃−1
0 ◦ α̃0(|u|) v dµ(4.2)

for u, v ∈ V . In the following discussion, we are going to find a solution
u ∈ V of

A(u) + B(u) = f.

3. (Continuities of operators) First, for each m ∈ N, we plan to find
a solution um ∈ Vm for the system:

A(um)(wj) + B(um)(wj) = f(wj), 1 ≤ j ≤ m.

To accomplish it, set

π∗
m(ϕ)(x) := ϕ(πm(x)), for ϕ ∈ V ′, x ∈ Rm,

and we notice that π∗
m ◦ (A + B) ◦ πm : Rm → (Rm)′ is continuous

because it is well-known that the dual linear operator π∗
m : V ′ → (Rm)′

of continuous operator πm is continuous and from the facts that

Lemma 4.1. The operators A,B : V → V ′ are continuous.

Proof. For each i = 1, 2, · · · , n, we note that ∥uxi∥Pαi
≤ ∥u∥V (from

the definition of the norm of V , see (3.2)). Hence the operators ∂
∂xi

:

V → Pαi(Ω) are continuous. Also, for each i = 0, 1, 2, · · · , n, we define
an operator Ti : Pαi(Ω) → Pβi

(Ω) by

Ti(u) =
α̃i(|u|)

u

for u ̸= 0 and Ti(0) = 0. Then the operator Ti is well-defined because∫
Ω
β̃i(|Ti(u)|)dµ =

∫
Ω
β̃i

(
α̃i(|u|)
|u|

)
dµ =

∫
Ω
α̃i(|u|)dµ < ∞

for any 0 ̸= u ∈ Pαi . This implies that ∥Ti(u)∥Pβi
= β̃−1

i ◦ α̃i(∥u∥Pαi
),

which yields the continuity of Ti.
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Define
(

∂
∂xi

)∗
: Pβi

→ V ′ by(
∂

∂xi

)∗
v(ϕ) :=

∫
Ω
v(x)ϕxi(x)dx,

for v ∈ Pβi
and ϕ ∈ V . Then the operator

(
∂
∂xi

)∗
is continuous, since∥∥∥∥( ∂

∂xi

)∗
v

∥∥∥∥
V ′
:= sup

∥ϕ∥
V
̸=0

∣∣∫
Ω v(x)ϕxi(x)dx

∣∣
∥ϕ∥V

≤ ~ sup
∥ϕ∥

V
̸=0

∥v∥Pβi
∥ϕxi∥Pαi

∥ϕ∥V

≤ ~∥v∥Pβi
.

Therefore the composition maps Si :=
(

∂
∂xi

)∗
◦ Ti ◦ ∂

∂xi
: V → V ′,

i = 1, 2, · · · , n are continuous. We obtain the continuity of the operator
A since it is a linear combination of the continuous operators Si.

By virtue of Poincaré’s inequality(Theorem 2.1), we have ∥u∥Pα0
≤

∥u∥V , so the inclusion ι0 : V ↪→ Pα0(Ω) and its dual operator ι∗0 :
Pβ0(Ω) → V ′ are continuous. Hence B = ι∗0 ◦ T0 ◦ ι0 : V → V ′ is also
continuous.

4. Now we plan to show that the operator Fm : Rm → (Rm)′ defined
by

Fm(v) := π∗
m ◦ (A+ B) ◦ πm(v)− π∗

m(f), v ∈ Rm

has a zero.

5. (Coercivity of A+B) For it, we observe that the operator A+B :
V → V ′ is coercive. That is to say, we observe that

lim
∥u∥V →∞

(A+ B)u(u)
∥u∥V

= ∞.(4.3)

In fact, for each u ∈ V , we have

∥u∥V := ∥u∥Pα0
+

n∑
j=1

∥uxj∥Pαj

≤ (n+ 1)max
{
∥u∥Pα0

, ∥ux1∥Pα1
, ∥ux2∥Pα2

, · · · , ∥uxn∥Pαn

}
.

There is an index j0 (0 ≤ j0 ≤ n) such that

max
{
∥u∥Pα0

, ∥ux1∥Pα1
, ∥ux2∥Pα2

, · · · , ∥uxn∥Pαn

}
= ∥uxj0

∥Pαj0
,
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wherein ∥uxj0
∥Pαj0

may be replaced by ∥u∥Pα0
if j0 = 0. Then we obtain

(A+ B)u(u)
∥u∥V

=
α̃0(∥u∥Pα0

) +
∑n

j=1 α̃j(∥uxj∥Pαj
)

∥u∥Pα0
+

∑n
j=1 ∥uxj∥Pαj

≥
α̃j0(∥uxj0

∥Pαj0
)

(n+ 1)∥uxj0
∥Pαj0

=
1

n+ 1
β̃j0

−1 ◦ α̃j0

(
∥uxj0

∥Pαj0

)
≥ 1

n+ 1
β̃j0

−1 ◦ α̃j0

(
1

n+ 1
∥u∥V

)
.

For any positive real number L > 0, there is N > 0 such that, for all
0 ≤ j ≤ n, (

β̃j
−1 ◦ α̃j

)
(t) ≥ (n+ 1)L

whenever t ≥ N . Hence for any u ∈ V with ∥u∥V ≥ (n+ 1)N , we have

1

n+ 1
β̃j0

−1 ◦ α̃j0

(
1

n+ 1
∥u∥V

)
≥ L.

Therefore (A+B)u(u)
∥u∥V goes to infinity as ∥u∥V → ∞, which explains the

coercivity of the operator A+ B : V → V ′.

6. (Solution of Fm(u) = 0) We revisit the meaning of the limit (4.3)
to find that for any M > 0, there exists a number N > 0 such that
(A + B)u(u) > M∥u∥V for any ∥u∥V ≥ N . By taking M := ∥f∥V ′ , we
have

f(u) ≤ |f(u)| ≤ ∥f∥V ′∥u∥V < (A+ B)u(u)
if ∥u∥V ≥ N . Therefore for any ∥πm(v)∥V ≥ N , we obtain

Fm(v)(v) = π∗
m ◦ (A+ B) ◦ πm(v)(v)− π∗

mf(v)

= (A+ B)(πm(v))(πm(v))− f(πm(v)) > 0.(4.4)

Since as |v| goes to infinity, πm(v) also goes to infinity, and there is r > 0
such that |v| ≥ r implies ∥πm(v)∥V ≥ N . Therefore if we denote the

Riesz map as R : Rm → (Rm)′ and put F̃m := R−1 ◦ Fm, we get

F̃m(v) · v = Fm(v)(v) > 0, if |v| ≥ r.

The Brouwer’s fixed point theorem together with the continuity of F̃m

implies that F̃m has a zero inside the ball {x ∈ Rm : |x| ≤ r}. Hence
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Fm has a zero: there is |ūm| ≤ r satisfying Fm(ūm) = 0. Therefore, for
each m ≥ 1, we obtain

(A+ B) ◦ πm(ūm)(πm(v))− f(πm(v)) = 0 for all v ∈ Rm,

or equivalently

(A+ B) ◦ πm(ūm)(w)− f(w) = 0 for all w ∈ Vm.

Denote πm(ūm) := um, and we get

(A+ B)um = f in V ′
m.(4.5)

7. (Weak-convergence of solutions) Hölder’s inequality together with
the identity (2.2) implies

|Au(ϕ)| ≤
n∑

j=1

∣∣∣∣∫
Ω

α̃j(|∂xju|)
∂xju

∂xjϕ dµ

∣∣∣∣
≤ ~

n∑
j=1

β̃j
−1
(∫

Ω
β̃j

(
α̃j(|∂xju|)
|∂xju|

)
dµ

)
α̃j

−1

(∫
Ω
α̃j(|∂xjϕ|) dµ

)

= ~
n∑

j=1

β̃j
−1

(∫
Ω
α̃j(|∂xju|) dµ

)
∥∂xjϕ∥Pαj

= ~
n∑

j=1

β̃j
−1 ◦ α̃j(∥∂xju∥Pαj

)∥∂xjϕ∥Pαj

≤ ~
n∑

j=1

β̃j
−1 ◦ α̃j(∥u∥V ) · ∥ϕ∥V .

Similarly, we can have an estimate: for u ∈ V ,

|Bu(ϕ)| ≤ β̃0
−1 ◦ α̃0(∥u∥V ) · ∥ϕ∥V .

Since α̃j and β̃−1
j are continuous on R+(j = 0, 1, 2, · · · , n), the image

(A+B)(S) of a bounded set S in V is bounded in V ′. It follows from (4.4)
that ∥um∥V ≤ N and so the sequence {∥(A+ B)um∥V ′} is bounded.
So the sequence {|f(um)|} is bounded in R. Then we can extract a
subsequence {umk

} of {um} and take an element u in V satisfying the
following properties

(1) umk
converges weakly to u in V

(2) (A+ B)umk
converges weakly to f in V ′

(3) (A+ B)umk
(umk

) = f(umk
) converges to f(u).
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8. (Monotonicity) For any real numbers a, b, we notice that(
α̃j(|a|)

a
− α̃j(|b|)

b

)
(a− b)

=
{
β̃−1
j ◦ α̃j(|a|)sgn(a)− β̃−1

j ◦ α̃j(|b|)sgn(b)
}
(a− b) > 0,

because β̃−1
j ◦ α̃j is monotone increasing. Hence we get

((A+ B)u− (A+ B)v)(u− v)

=

n∑
j=1

∫
Ω

(
α̃j(|uxj |)

uxj

−
α̃j(|vxj |)

vxj

)
(uxj − vxj )dx

+

∫
Ω

(
α̃0(|u|)

u
− α̃0(|v|)

v

)
(u− v)dx > 0,

for u, v ∈ V . Hence we have that for all v ∈ V ,

(A+ B)umk
(umk

)− (A+ B)umk
(v)

− (A+ B)v(umk
) + (A+ B)v(v) ≥ 0.

Then as k goes to infinity, we get

f(u)− f(v)− (A+ B)v(u) + (A+ B)v(v) ≥ 0.

This is equivalent to

(f −Av − Bv)(u− v) ≥ 0,(4.6)

and this holds for all v ∈ V .
9. Now for any w ∈ V and any t > 0, we put v := u− tw , and then

plug v into (4.6) to have t(f −A(u− tw)− B(u− tw))w ≥ 0. Or

f(w)−A(u− tw)w − B(u− tw)w ≥ 0.

By the continuity of A+ B (Lemma 4.1), we let t → 0 to obtain

f(w)− (A+ B)u(w) ≥ 0,(4.7)

for all w ∈ V . We replace w in (4.7) with −w to find

f(w)− (A+ B)u(w) ≤ 0.(4.8)

Combine (4.7) with (4.8), and we finally obtain

f = (A+ B)u.

The proof is now completed. �
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